Complex Efficiency of Using Wood Pellets in Power Plants

Authors

DOI:

https://doi.org/10.37482/0536-1036-2021-1-159-172

Keywords:

boiler, wood pellet fuel, harmful substances, numerical modeling, heat losses, efficiency

Abstract

In advanced countries, the dramatic impact of greenhouse gases on the global climate is reduced by replacing fossil fuels with biofuels. This method is being actively encouraged. However, by-products of logging, processing and conversion of wood are classified as difficult to burn fuels due to their high moisture content, low energy density and extremely heterogeneous granulometric composition. A promising direction to increase the energy density and transportability of the timber industry by-products is their granulation. Wood pellet fuel burning in heat-generating plants results in significant increase in their energy and environmental performance. The purpose of the paper is an experimental and calculation study of the energy and environmental performance of 4 MW hot water boilers produced by Polytechnik Luft- und Feuerungstechnik GmbH in the process of burning pine and spruce wood pellets obtained from by-products woodworking. When performing studies, the components of the boiler’s heat balance, gas release, and particulate emissions were determined. Numerical modeling of thermochemical and aerodynamic processes taking place in the boiler combustion chamber was carried out by using the Ansys Fluent three-dimensional simulation software. Together with industrial-operational tests it showed the possibility to reduce the total share of flue gas recirculation into combustion chambers of boiler units to values not exceeding 0.45, in providing an acceptable temperature of combustion products at the combustion chamber outlet and maintaining minimum emissions of carbon and nitrogen monoxides. At the same time, the share of gases fed by recirculation smoke exhausters to the over-bed area of the burner should have higher values than under the reciprocating grates of boilers. Guidelines for comprehensive improvement of wood pellet combustion efficiency in combustion chamber of 4 MW hot water boilers have been developed and implemented. The priorities are: using the air passed through the cooling channels of the setting as secondary air; reducing the rarefaction in the combustion chambers to 30–70 Pa; optimizing the ratio of primary and secondary air, herewith, the share of primary air in the total flow should be 0.26–0.35. Implementation of the developed guidelines allowed to increase the boiler gross efficiency by 0.5–1.8 %, to reduce the aerodynamic resistance of the gas path by 15–20 % and to ensure consistently low emissions of carbon and nitrogen monoxides and soot particles. When designing boiler units for burning wood pellet fuel it is advisable to place heating surfaces in the combustion chamber, included in the circulation circuit of the boiler. This will increase the efficiency and life cycle of the boiler unit.
For citation: Lyubov V.K., Vladimirov A.M. Complex Efficiency of Using Wood Pellets in Power Plants. Lesnoy Zhurnal [Russian Forestry Journal], 2021, no. 1, pp. 159–172. DOI: 10.37482/0536-1036-2021-1-159-172

Downloads

Download data is not yet available.

Author Biographies

В. К. Любов, Northern (Arctic) Federal University named after M.V. Lomonosov

Doctor of Engineering, Prof.; ResearcherID: AAF-8949-2019

А. М. Владимиров, Arkhangelsk Pulp and Paper Mill

Engineer; ResearcherID: AAB-8889-2021

References

Башмаков И.А., Мышак А.Д. Затраты и выгоды реализации стратегий низкоуглеродного развития России: перспективы до 2050 года // Вопр. экономики. 2014. № 8. С. 70–91. [Bashmakov I.А., Myshak A.D. Costs and Benefits of the Transition to Low-Carbon Economy in Russia: Perspectives up to 2050. Voprosy Ekonomiki, 2014, no. 8, pp. 70–91]. DOI: 10.32609/0042-8736-2014-8-70-91

Кокорин А. Новые факторы и этапы глобальной и российской климатической политики // Экон. политика. 2016. Т. 11, № 1. С. 157–176. [Kokorin A. New Factors and Stages of the Global and Russian Climate Policy. Ekonomicheskaya Politika, 2016, vol. 11, no. 1, pp. 157–176]. DOI: 10.18288/1994-5124-2016-1-10

Любов В.К., Любова С.В. Повышение эффективности энергетического использования биотоплив. Архангельск: САФУ, 2017. 533 с. [Lyubov V.K., Lyubova S.V. Efficiency Improvement of the Biofuels Energy Use. Arkhangelsk, NArFU Publ., 2017. 533 p.].

Любов В.К., Малыгин П.В., Попов А.Н., Попова Е.И. Исследование эффективности работы водогрейного котла при сжигании биотоплив // Биотехнологии в хими-ко-лесном комплексе: материалы междунар. науч. конф., Архангельск, 11–12 сент. 2014 г. Архангельск: САФУ, 2014. С. 201–205. [Lyubov V.K., Malygin P.V., Popov A.N., Popova E.I. Biofuel Combustion Efficiency of the Hot-Water Boiler. Biotechnology in the Chemical and Forest Complex: Proceedings of the International Scientific Conference, Arkhangelsk, September 11–12, 2014. Arkhangelsk, NArFu Publ., 2014, pp. 201–205].

Любов В.К., Малыгин П.В., Попов А.Н., Попова Е.И. Определение потерь тепла в окружающую среду на основе комплексного исследования эффективности работы котлов // Теплоэнергетика. 2015. № 8. С. 36–41. [Lyubov V.K., Malygin P.V., Popov A.N., Popova E.I. Determining Heat Loss into the Environment Based on Comprehensive Investigation of Boiler Performance Characteristics. Teploenergetika [Thermal Engineering], 2015, no. 8, pp. 36–41]. DOI: 10.1134/S004060151506004X

Макаров И.А., Чен Х., Пальцев С.В. Последствия Парижского климатического соглашения для экономики России // Вопр. экономики. 2018. № 4. С. 76–94. [Makarov I.A., Chen H., Paltsev S.V. Impacts of Paris Agreement on Russian Economy. Voprosy Ekonomiki, 2018, no. 4, pp. 76–94]. DOI: 10.32609/0042-8736-2018-4-76-94

Методика измерения массовой концентрации сажи в промышленных выбросах и в воздухе рабочей зоны: утв. ОАО НИИ «Техуглерод». Ярославль, 2005. 10 с. [Measurement Procedure of the Mass Concentration of Soot in Industrial Emissions and in the Air of the Working Area. OAO Scientific Research Institute “TEKhUGLEROD”, 2005. 10 p.].

Мохирев А.П., Безруких Ю.А., Медведев С.О. Переработка древесных отходов предприятий лесопромышленного комплекса, как фактор устойчивого природопользования // Инж. вестн. Дона. 2015. № 2, ч. 2. С. 81. [Mokhirev A.P., Bezrukikh J.A., Medvedev S.O. Recycling of Wood Wastes of Timber Industry, as a Factor of Sustainable Resource Management. Inzhenernyy vestnik Dona [Engineering Journal of Don], 2015, no. 2, part 2, art. 81].

Попова Е.И., Попов А.Н., Любов В.К., Варакин Е.А. Сжигание твердых топлив в водогрейном котле Firematic 60 // Природопользование в Арктике: современное состояние и перспективы развития: сб. науч. тр. 1-й Рос. науч.-практ. конф., Якутск, 22–25 сент. 2015 г. Якутск: СВФУ, 2015. С. 464–473. [Popova E.I., Popov A.N., Lyubov V.K., Varakin E.A. Solid Fuels Combustion in the Hot Water Boiler Firematic 60. Proceedings of the 1st International Scientific and Practical Conference “Nature Management in the Arctic: Current State and Development Potential”, Yakutsk, September 22–25, 2015. Yakutsk, NEFU Publ., 2015, pp. 464–473].

Сафонов Г.В., Стеценко А.В., Дорина А.Л., Авалиани С.Л., Сафонова Ю.А., Беседовская Д.С. Стратегия низкоуглеродного развития России. Возможности и выгоды замещения ископаемого топлива «зелеными» источниками энергии М.: ТЕИС, 2016. 48 с. [Safonov G.V., Stetsenko A.V., Dorina A.L., Avaliani S.L., Safonova Yu.L., Besedovskaya D.S. The Strategy of Low-Carbon Development of Russia. Opportunities and Benefits of Substitution of Fossil Fuels with Green Energy Sources. Moscow, TEIS Publ., 2016. 48 p.].

Сборник методик по определению концентраций загрязняющих веществ в промышленных выбросах. Л.: Гидрометеоиздат, 1987. 270 с. [Collection of Methods for Determining the Concentrations of Pollutants in Industrial Emissions. Leningrad, Gidrometeoizdat Publ., 1987. 270 p.].

Тепловой расчет котлов (нормативный метод) / РАО «ЕЭС России», ВТИ, НПО ЦКТИ. СПб., 1998. 257 с. [Thermal Calculation of Boilers (Standard Method). Saint Petersburg, OAO Unified Energy System of Russia, 1998. 257 p.].

Трембовля В.И., Фингер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. 2-е изд., перераб. и доп. М.: Энергоатомиздат, 1991. 416 с. [Trembovlya V.I., Finger E.D., Avdeyeva A.A. Heating Tests of Boilers. Moscow, Energoatomizdat Publ., 1991. 416 p.].

Arshadi M., Gref R., Geladi P., Dahlqvist S.-A., Lestander T. The Influence of Raw Material Characteristics on the Industrial Pelletizing Process and Pellet Quality. Fuel Processing Technology, 2008, vol. 89, iss. 12, pp. 1442–1447. DOI: 10.1016/j.fuproc.2008.07.001

Borchsenius H., Borgnes D. Black Carbon Emissions from the District Heating Sector in the Barents Region. NORSK ENERGI. Ministry of Environment of Norway. Project Name: RUS-11/0060. Norway, 2013. 56 p.

Flach B., Bendz K., Krautgartner R., Lieberz S. EU-27. Biofuels Annual Report No. NL3034. The Hague, USDA Foreign Agricultural Service, 2013. 34 p.

Gera D., Mathur M.P., Freeman M.C., Robinson A. Effect of Large Aspect Ratio of Biomass Particles on Carbon Burnout in a Utility Boiler. Energy & Fuels, 2002, vol. 16, iss. 6, pp. 1523–1532. DOI: 10.1021/ef0200931

Kruggel-Emden H., Wirtz S., Scherer V. An Experimental Investigation of Mixing of Wood Pellets on a Forward Acting Grate in Discontinuous Operation. Powder Technology, 2013, vol. 233, pp. 261–277. DOI: 10.1016/j.powtec.2012.08.029

Kurz D., Schnell U., Scheffknecht G. CFD Simulation of Wood Chip Combustion on a Grate Using an Euler-Euler Approach. Combustion Theory and Modelling, 2012, vol. 16, iss. 2, pp. 251–273. DOI: 10.1080/13647830.2011.610903

Magdziarz A., Wilk M., Straka R. Combustion Process of Torrefied Wood Biomass. Journal of Thermal Analysis and Calorimetry, 2017, vol. 127, pp. 1339–1349. DOI: 10.1007/s10973-016-5731-0

Petzold A., Ogren J.A., Fiebig M., Laj P., Li S.-M., Baltensperger U., Holzer-Popp T., Kinne S., Pappalardo G., Sugimoto N., Wehrli C., Wiedensohler A., Zhang X.-Y. Recommendations for Reporting “Black Carbon” Measurements. Atmospheric Chemistry and Physics, 2013, vol. 13, iss. 16, pp. 8365–8379. DOI: 10.5194/acp-13-8365-2013

Poletto M., Zattera A.J., Forte M.M.C., Santana R.M.C. Thermal Decomposition of Wood: Influence of Wood Components and Cellulose Crystallite Size. Bioresource Technology, 2012, vol. 109, pp. 148–153. DOI: 10.1016/j.biortech.2011.11.122

Porfiriev B.N., Roginko S.A. Energy on Renewable Sources: Prospects for the World and for Russia. Herald of the Russian Academy of Sciences, 2016, vol. 86, iss. 6, pp. 433–440. DOI: 10.1134/S101933161606006X

Scharler R., Obernberger I. Numerical Modelling of Biomass Grate Furnaces. Industrial Furnaces and Boilers: Proceedings of the 5th European Conference, April 11–14, 2000, Porto, Portugal. Porto, 2000. 17 p.

Simsek E., Brosch B., Wirtz S., Scherer V., Krüll F. Numerical Simulation of Grate Firing Systems Using a Coupled CFD/Discrete Element Method (DEM). Powder Technology, 2009, vol. 193, iss. 3, pp. 266–273. DOI: 10.1016/j.powtec.2009.03.011

Published

2021-02-26

How to Cite

Любов, В. К., and А. М. Владимиров. “Complex Efficiency of Using Wood Pellets in Power Plants”. Lesnoy Zhurnal, no. 1, Feb. 2021, pp. 159-72, doi:10.37482/0536-1036-2021-1-159-172.

Issue

Section

MECHANICAL TECHNOLOGY OF WOOD AND WOOD SCIENCE

Most read articles by the same author(s)