Simulation of the Temperature Field in the Crushed Wood Heap Massif
DOI:
https://doi.org/10.17238/issn0536-1036.2019.6.213Keywords:
storage of crushed wood, chips, heat pipe, thermal conductivity of dispersed materials, heat capacity of dispersed materials, wood self-heatingAbstract
Storage of the crushed wood materials at the wood processing enterprises is carried out in the open air in formed heaps of various sizes and shapes. The disadvantage of such storage is uncontrolled self-heating of chips to critical temperatures driven by thermophiles. The payload mass of wood gets lost, its quality significantly degrades, and a risk of flame development appears without proper control. In order to prevent negative consequences, it is necessary to reject the excess heat energy from the massif of crushed wood material into the environment. Heat rejection will allow to establish control over thermal processes and operate with temperature fields inside a heap. Production engineering measures can be carried out with the use of heat pipes. This method is effective and environmentally friendly; and does not require the involvement of commercial energy consumption. Basic studies of the processes occurring in the heap massif of crushed wood were carried out for solution substantiation. The research purpose is to identify mathematical regularities describing the influence of the key factors on the processes of self-heating of crushed wood stored as the cone-formed heaps in the open air conditions. Methods of mathematical simulation, probability theory and mathematical statistics with the use of computational software systems were used as a part of the study. As a result, a system of equations those simulate the processes of self-heating of crushed wood and allow to predict the temperature field inside a heap to a given time interval is obtained, which will allow developing methods of industrial chips safe storage.
For citation: Desnev A.N., Prokof’ev G.F., Tyurikov V.Yu. Simulation of the Temperature Field in the Crushed Wood Heap Massif. Lesnoy Zhurnal [Russian Forestry Journal], 2019, no. 6, pp. 213–223. DOI: 10.17238/issn0536-1036.2019.6.213
Downloads
References
Авдуевский В.С., Сорокин В.П., Ягодкин И.В. Основы теплопередачи в авиационной и ракетно-космической технике. M.: Машиностроение, 1975. 256 с. [Avduyevskiy V.S., Sorokin V.P., Yagodkin I.V. Heat Transfer Principles in Rocket and Space Equipment. Moscow, Mashinostroyeniye Publ., 1975. 256 p.].
Белозерцев В.Н., Бирюк В.В., Толстоногов А.П. Теплотехника. Самара: Самар. ун-т; 2001. 86 с. [Belozertsev V.N., Biryuk V.V., Tolstonogov A.P. Heat Engineering. Samara, Samarskiy universitet Publ., 2001. 86 p.].
Ивановский М.Н., Сорокин В.П., Ягодкин И.В. Физические основы тепловых труб. М.: Атомиздат, 1978. 256 с. [Ivanovskiy M.N., Sorokin V.P., Yagodkin I.V. Physical Principles of Heat Pipes. Moscow, Atomizdat Publ., 1978. 256 p.].
Исаев С.И., Кожинов И.А., Кофанов В.И. Теория тепломассообмена / под ред. А.И. Леонтьева. M.: Высш. шк., 1979. 495 с. [Isayev S.I., Kozhinov I.A., Kofanov V.I. Theory of Heat and Mass Exchange. Ed. by A.I. Leont’yev. Moscow, Vysshaya shkola Publ., 1979. 495 p.].
Исаченко В.П., Осипова В.А., Сукомел А.С. Теплопередача. 4-е изд., перераб. и доп. M.: Энергоиздат, 1981. 417 с. [Isachenko V.P., Osipova V.A., Sukomel A.S. Heat Transfer. Moscow, Energoizdat Publ., 1981. 417 p.].
Кошкин В.К., Калинин Э.К. Теплообменные аппараты и теплоносители. M.: Машиностроение, 1971. 200 с. [Koshkin V.K., Kalinin E.K. Heat Exchangers and Heat Carriers. Moscow, Mashinostroyeniye Publ., 1971. 200 p.].
Кутателадзе С.С. Основы теории теплообмена. 5-е изд., перераб. и доп. M.: Атомиздат, 1979. 416 с. [Kutateladze S.S. Fundamentals of the Theory of Heat Exchange. Moscow, Atomizdat Publ., 1979. 416 p.].
Лыков А.В. Теория теплопроводности. M.: Высш. шк., 1967. 600 с. [Lykov A.V. Theory of Thermal Conductivity. Moscow, Vysshaya shkola Publ., 1967. 600 p.].
Лыков А. В. Тепломассообмен: справ. M.: Энергия, 1971. 479 с. [Lykov A.V. Heat and Mass Exchange: Handbook. Moscow, Energiya Publ., 1971. 479 p.].
Михеев М.А., Михеева И.М. Основы теплопередачи. 2-е изд. M.: Энергия, 1977. 343 с. [Mikheyev M.A., Mikheyeva I.M. Heat Transfer Principles. Moscow, Energiya Publ., 1977. 343 p.].
Николаев Г.П., Изотеева О.Ю. Расчет рабочих характеристик контурных тепловых труб // Молодой ученый. 2012. № 3. С. 17–25. [Nikolayev, G.P., Zoteyeva O.Yu. Performance Analysis of Loop Heat Pipes. Molodoy uchenyy [Young Scientist], 2012, no. 3, pp. 17–25].
Угланов Д.А. Численное моделирование тепловых процессов аппаратов. Самара: Самар. ун-т, 2017. 34 с. [Uglanov D.A. Numerical Simulation of Thermal Processes of Apparatus. Samara, Samarskiy universitet Publ., 2017. 34 p.].
Юдаев Б.Н. Теплопередача. M.: Высш. шк., 1973. 359 с. [Yudayev B.N. Heat Transfer. Moscow, Vysshaya shkola Publ., 1973. 359 p.].
Юрьев В.Н., Лебедев П.Д. Теплотехнический справочник: в 2 т. Т. 2. 2-е изд., перераб. M.: Энергия, 1976. 896 с. [Yur’yev V.N., Lebedev P.D. Heat Engineering Handbook. In 2 vol. Vol. 2. Moscow, Energiya Publ., 1976. 896 p.].
Braza M., Chassiang P., Ha Minh H. Numerical Study and Physical Analysis of Pressure and Velocity Field in the Near Wake of a Circular Cylinder. Journal of Fluid Mechanics, 1986, vol. 165, pp. 79–130. DOI: 10.1017/S0022112086003014
Lef B.I., Kesler М.G. A Generalized Thermodynamic Correlation Based on Three-Parameter Corresponding States. AlChE Journal, 1975, vol. 21, iss. 3, pp. 510–527. DOI: 10.1002/aic.690210313
LeVeque R.J. Finite Volume Methods for Hyperbolic Problems. Cambridge, Cambridge University Press, 2002. 558 p.
Mandelbrot B.B. The Fractal Geometry of Nature. San Francisco, W.H. Freeman, 1982. 468 p.
Srinivas M., Ravisankar M.S., Seetharamu K.N., Aswathanarayana P.A. Finite Element Analysis of Internal Flows with Heat Transfer. Sadhana, 1994, vol. 19, iss. 5, pp. 785–816. DOI: 10.1007/BF02744405
Stefan J. Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Annalen der Physik, 1891, vol. 278, iss. 2, pp. 269–286. DOI: 10.1002/andp.18912780206
Varaprasad Patnaik B.S., Gowda Y.T.K., Ravisankar M.S., Aswatha Narayana P.A., Seetharamu K.N. Finite Element Simulation of Internal Flows with Heat Transfer Using a Velocity Correction Approach. Sadhana, 2001, vol. 26, iss. 3, pp. 251–283. DOI: 10.1007/BF02703387
Zabaras N., Ruan Y. A Deforming Finite Element Method Analysis of Inverse Stefan Problems. International Journal for Numerical Methods in Engineering, 1989, vol. 28, iss. 2, pp. 295–313. DOI: 10.1002/nme.1620280205