Computer Simulation of the Recuperative Towing Coupler of a Forest Truck with a Trailer
DOI:
https://doi.org/10.17238/issn0536-1036.2019.4.108Keywords:
forest truck, trailer, towing coupler, recovery, hydraulic power, working fluid, hydropneumatic accumulator, mathematical model, simulation modelingAbstract
One of the most promising and feasible ways to reduce the fuel consumption of a forest truck with a trailer is the development and support of the operation of its recuperative towing coupler. A fundamentally new scheme of the device was proposed based on the previous studies. In order to assess the possibility of its usage in a forest truck with a trailer, find the range of recoverable power, determine the optimal design parameters of the hydraulic cylinder of the coupler a three-dimensional mathematical model of a forest truck with a trailer movement along uneven support surface has been created based on the classical mechanics methods. A computer program was created based on this model. The program allowed to obtain the dependences of speed of a forest truck with a trailer, height of the supporting surface irregularities and hydraulic cylinder diameter of the recuperative towing coupler on the mean values of the average recoverable power and longitudinal acceleration. It is found that the operation of a
forest truck with a trailer, equipped with a recuperative towing coupler, on forest roads with ground coating allows recuperating the power of 4 kW. The recoverable power changes with the increase of the movement speed of a forest truck with a trailer along the forest road with ground coating according to a quadratic law. It has been found that with the increase of the average height of the supporting surface irregularities to 0.4 m, the increase of the mean values of the recoverable power and longitudinal acceleration of the trailer occurs according to a law close to quadratic, however, a further increase of the height of the supporting surface irregularities does not lead to the significant growth of the parameters. The optimal diameter of the hydraulic cylinder for the recuperative towing coupler, which allows recuperating the highest power value at a high efficiency of the damping properties of the hydraulic system, is determined. The research results can be used by research and development organizations in the development and improvement of recuperative towing couplers of forest trucks with a trailer.
For citation: Posmetyev V.I., Nikonov V.O., Posmetyev V.V. Computer Simulation of the Recuperative Towing Coupler of a Forest Truck with a Trailer. Lesnoy Zhurnal [Forestry Journal], 2019, no. 4, pp. 108–123. DOI: 10.17238/issn0536-1036.2019.4.108
Downloads
References
Адлер Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий. М.: Наука, 1976. 279 с.
Грановский В.А., Сирая Т.Н. Методы обработки экспериментальных данных при измерениях. Л.: Энергоатомиздат. Ленингр. отд-ние, 1990. 288 с.
Инженерные расчеты на ЭВМ: Справочное пособие / [В.А. Троицкий, И.М. Иванова, И.А. Старостин, В.Д. Шелест]; под ред. В.А. Троицкого. Л.: Машиностроение, 1979. 288 с.
Кузьмичев Д.А., Радкевич И.А., Смирнов А.Д. Автоматизация экспериментальных исследований: учеб. пособие. М.: Наука. Гл. ред. физ.-мат. лит., 1983. 392 с.
Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1991. 272 с.
Никонов В.О., Посметьев В.И., Журавлев Р.В. Анализ конструктивных особенностей тягово-сцепных устройств грузовых автомобилей с прицепами // Воронеж. науч.-техн. вестн. 2018. Т. 4, № 4(26). С. 13–24. Режим доступа: https://elibrary.ru/item.asp?id=36759935 (дата обращения: 25.02.2019).
Никонов В.О., Посметьев В.И., Посметьев В.В. Оценка эффективности лесовозного автопоезда с накопителями энергии в гидромоторах колес на основе компьютерного моделирования // Мир транспорта и технологических машин. 2018. № 3(62). С. 46–54.
Никонов В.О., Посметьев В.И., Яковлев К.А. Рекуперация гидравлической энергии в тягово-сцепном устройстве лесовозного автомобиля с прицепом // Лесотехн. журн. 2018. № 4. С. 230–239. DOI: 10.12737/article_5c1a323b1d0433.96668845
Новиков Е.А., Кнауб Л.В. Численные методы для обыкновенных дифференциальных уравнений и динамических систем: учеб. пособие. Красноярск: СибФУ, 2010. 112 с.
Посметьев В.И., Никонов В.О. Обоснование схемы лесовозного автомобиля, оснащенного перспективной конструкцией колесного модуля с гидроприводом // Мир транспорта и технологических машин. 2017. № 3(58). С. 27–34.
Самарский А.А., Гулин А.В. Численные методы: учеб. пособие для вузов. М.: Наука. Гл. ред. физ-мат. лит., 1989. 432 с.
Советов Б.Я., Яковлев С.А. Моделирование систем: учеб. для вузов. М.: Высш. шк., 1998. 319 с.
Abu-Hamdeh N.H., Al-Jalil H.F. Computer Simulation of Stability and Control of Tractor-Trailed Implement Combinations under Different Operating Conditions // Bragantia, Compinas. 2004. Vol. 63, no. 1. Pp. 149–162.
Dindorf R., Woś P. Development of Energy Efficient Hydrostatic Drives with Energy Recovery // Mechanik. 2017. No. 8-9. Pp. 776–782. DOI: 10.17814/mechanik.2017.8-9.114
Fang Z., Guo X., Xu L., Zhang H. Experimental Study of Damping and Energy Regeneration Characteristics of a Hydraulic Electromagnetic Shock Absorber // Advances in Mechanical Engineering. 2013. Vol. 2013, art. 943528. DOI: 10.1155/2013/943528
Heikkilä M., Linjama M. Hydraulic Energy Recovery in Displacement Controlled Digital Hydraulic System // Proceedings of the 13th Scandinavian International Conference on Fluid Power, Linköping, Sweden, June 3–5, 2013. Linköping: Scandinavian International Conference on Fluid Power, 2013. Pp. 1–7.
Posmetev V.I., Nikonov V.O., Posmetev V.V. Investigation of the Energy-Saving Hydraulic Drive of a Multifunctional Automobile with a Subsystem of Accumulation of Compressed Air Energy // IOP Conf. Series: Materials Science and Engineering. 2018. Vol. 441, art. 012041. DOI: 10.1088/1757-899X/441/1/012041
Wang R., Jiang Q., Ye Q., Chen L., Meng X. Characteristics Analysis and Experiment of Hydraulic Interconnected Energy-Regenerative Suspension // Transactions of the Chinese Society for Agricultural Machinery. 2017. Vol. 48(8). Pp. 350–357. DOI: 10.6041/j.issn.1000-1298.2017.08.042
Zhang H., Guo X., Xu L., Hu S., Fang Z. Parameters Analysis of Hydraulic-Electrical Energy Regenerative Absorber on Suspension Performance // Advances in Mechanical Engineering. 2014. Vol. 2014, art. 836502. DOI: 10.1155/2014/836502
Zou J., Guo X., Xu L., Abdelkareem M.A.A., Gong B., Zhang J., Tan G. Simulation Research of a Hydraulic Interconnected Suspension Based on a Hydraulic Energy Regenerative Shock Absorber // SAE Technical Paper 2018-01-0582. 2018. DOI: 10.4271/2018-01-0582
Поступила 01.03.19