Лазерное сканирование и аэро- фотосъемка с БПЛА в исследовании структуры лесотундровых древостоев Хибин

Авторы

DOI:

https://doi.org/10.37482/0536-1036-2021-4-9-22

Ключевые слова:

лазерное сканирование, аэрофотосъемка, цифровая модель рельефа, цифровая модель местности, цифровая модель лесного полога, сегментация, верхняя граница леса, Хибины

Аннотация

Изучение структуры древостоев является ключевым моментом в оценке роли деревьев в депонировании углерода. Информация о пространственной структуре напочвенного покрова на верхней границе леса, особенно чувствительной к изменениям климата, представлена в современных исследованиях недостаточно. Детальное дистанционное зондирование может стать источником данных, которые помогут понять свойства и динамику растительности в этих условиях. Проверена применимость наземного мобильного лазерного сканирования местности и аэрофотосъемки для быстрой и высокоточной оценки показателей насаждений в лесотундровом экотоне. При помощи этого метода получены цифровые модели лесного полога, дополненные впоследствии материалами аэросъемки исследовательского полигона на юго-восточном склоне Хибинских гор. На основе данных моделей определены границы крон деревьев. Для каждого из них найдены высота и площадь проекции кроны. Для верификации первый показатель, полученный лазерным сканированием, сопоставлен с высотами этих же деревьев, оцененными натурными измерениями. Сравнение выявило, что данные лазерного сканирования позволяют устанавливать значения высот, наиболее близкие к данным натурных измерений, если высоты определяются по максимальным показателям яркости пикселей цифровых моделей лесного полога c ручной корректировкой значений при обнаружении выбросов (R2 = 0,84). Поскольку ручная корректировка требует большого времени, предложен способ автоматизации измерений путем определения высот деревьев по сумме среднего значения яркости пикселей и стандартного отклонения, умноженного на 2,5 (R2 = 0,79). Площадные характеристики древостоев, определенные лазерным сканированием, были сопоставлены с данными фотосъемки с беспилотного летательного аппарата. Исследования дали подробную информацию о пространственном расположении и размерах 4424 деревьев на площади около 10 га и позволили сравнить результаты измерения характеристик деревьев, полученных разными методами. Также выявлено, что с увеличением высоты от 290 до 425 м над ур. м. на изученном склоне средняя высота древостоев снижается постепенно от 4,5–5,0 до 1,1–1,6 м с небольшими флуктуациями (0,2–0,4 м), в то время как сомкнутость древостоев изменяется от 4620–5860 до 145 м2/га нелинейным образом.

Для цитирования: Низаметдинов Н.Ф., Моисеев П.А., Воробьев И.Б. Лазерное сканирование и аэрофотосъемка с БПЛА в исследовании структуры лесотундровых древостоев Хибин // Изв. вузов. Лесн. журн. 2021. № 4. С. 9–22. DOI: 10.37482/0536-1036-2021-4-9-22
Финансирование: Сбор и анализ данных выполнен за счет средств гранта Российского научного фонда № 17-14-01112, подготовка текста и рисунков – за счет средств гранта Российского научного фонда № 21-14-00137.

Скачивания

Данные скачивания пока недоступны.

Биографии авторов

Н. Ф. Низаметдинов, Институт экологии растений и животных УрО РАН

канд. с.-х. наук, науч. сотр.; ResearcherID: AAI-3961-2020

П. А. Моисеев, Институт экологии растений и животных УрО РАН

д-р биол. наук; ResearcherID: M-9132-2013

И. Б. Воробьев, Институт экологии растений и животных УрО РАН

науч. сотр.; ResearcherID: AAK-3957-2021

Библиографические ссылки

Григорьев А.А., Дэви Н.М., Кукарских В.В., Вьюхин С.О., Галимова А.А., Моисеев П.А., Фомин В.В. Структура и динамика древостоев верхней границы леса в западной части плато Путорана // Экология. 2019. № 4. С. 243–254.

Grigor’ev A.A., Devi N.M., Kukarskikh V.V., V’yukhin S.O., Galimova A.A., Moiseev P.A., Fomin V.V. Structure and Dynamics of Tree Stands at the Upper Timberline in the Western Part of the Putorana Plateau. Ekologiya [Russian Journal Ecology], 2019, no. 4, pp. 243–254. DOI: https://doi.org/10.1134/S0367059719040073

Моисеев П.А., Галимова А.А., Бубнов М.О., Дэви Н.М., Фомин В.В. Динамика древостоев и их продуктивности на верхнем пределе произрастания в Хибинах на фоне современных изменений климата // Экология. 2019. № 5. С. 341–355.

Moiseev P.A., Galimova A.A., Bubnov M.O., Devi N.M., Fomin V.V. Tree Stands and Their Productivity Dynamics at the Upper Growing Limit in Khibiny on the Background of Modern Climate Changes. Ekologiya [Russian Journal Ecology], 2019, no. 5, pp. 341–355. DOI: https://doi.org/10.1134/s0367059719050081

Agisoft PhotoScan User Manual. Professional Edition, Version 0.9.0. Agisoft LLC, 2012. 49 p. Available at: http://downloads.agisoft.ru/pdf/photoscan-pro_0_9_0_en.pdf (accessed 07.02.20).

Bonan G.B. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 2008, vol. 320, iss. 5882, pp. 1444–1449. DOI: https://doi.org/10.1126/science.1155121

Brieger F., Herzschuh U., Pestryakova L.A., Bookhagen B., Zakharov E.S., Kruse S. Advances in the Derivation of Northeast Siberian Forest Metrics Using High-Resolution UAV-Based Photogrammetric Point Clouds. Remote Sensing, 2019, vol. 11, iss. 12, art. 1447. DOI: https://doi.org/10.3390/rs11121447

Cairns D.M. Patterns of Winter Desiccation in Krummholz Forms of Abies lasiocarpa at Treeline Sites in Glacier National Park, Montana, USA. Geografiska Annaler: Series A, Physical Geography, 2001, vol. 83, iss. 3, pp. 157–168. DOI: https://doi.org/10.1111/j.0435-3676.2001.00151.x

Chen Q., Baldocchi D., Gong P., Kelly M. Isolating Individual Trees in a Savanna Woodland Using Small Footprint Lidar Data. Photogrammetric Engineering & Remote Sensing, 2006, vol. 72, no. 8, pp. 923–932. DOI: https://doi.org/10.14358/PERS.72.8.923

Durrant-Whyte H., Bailey T. Simultaneous Localization and Mapping: Part I. IEEE Robotics & Automation Magazine, 2006, vol. 13, iss. 2, pp. 99–110. DOI: https://doi.org/10.1109/MRA.2006.1638022

Hagedorn F., Shiyatov S.G., Mazepa V.S., Devi N.M., Grigor’ev A.A., Bartysh A.A., Fomin V.V., Kapralov D.S., Terent’ev M., Bugman H., Rigling A., Moiseev P.A. Treeline Advances along the Urals Mountain Range – Driven by Improved Winter Conditions? Global Change Biology, 2014, vol. 20, iss. 11, pp. 3530–3543. DOI: https://doi.org/10.1111/gcb.12613

Harsch M.A., Hulme P.E., McGlone M.S., Duncan R.P. Are Treelines Advancing? A Global Meta-Analysis of Treeline Response to Climate Warming. Ecology Letters, 2009, vol. 12, iss. 10, pp. 1040–1049. DOI: https://doi.org/10.1111/j.1461-0248.2009.01355.x

Kammer A., Hagedorn F., Shevchenko I., Leifeld J., Guggenberger G., Goryacheva T.,Rigling A., Moiseev P. Treeline Shifts in the Ural Mountains Affect Soil Organic Matter Dynamics. Global Change Biology, 2009, vol. 15, iss. 6, pp. 1570–1583. DOI: https://doi.org/10.1111/j.1365-2486.2009.01856.x

Kulha N., Pasanen L., Aakala T. How to Calibrate Historical Aerial Photographs: A Change Analysis of Naturally Dynamic Boreal Forest Landscapes. Forests, 2018, vol. 9, iss. 10, art. 631. DOI: https://doi.org/10.3390/f9100631

Kullman L. Climate Change and Primary Birch Forest (Betula pubescens ssp. czerepanovii) Succession in the Treeline Ecotone of the Swedish Scandes. International Journal of Research in Geography, 2016, vol. 2, iss. 2, pp. 36–47. DOI: https://doi.org/10.20431/2454-8685.0202004

Liang X., Kukko A., Hyyppä J., Lehtomäki M., Pyörälä J., Yu X., Kaartinen H., Jaakkola A., Wang Y. In-situ Measurements from Mobile Platforms: An Emerging Approach to Address the Old Challenges Associated with Forest Inventories. ISPRS Journal of Photogrammetry and Remote Sensing, 2018, vol. 143, pp. 97–107. DOI: https://doi.org/10.1016/j.isprsjprs.2018.04.019

Lisein J., Pierrot-Deseilligny M., Bonnet S., Lejeune P. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model from Small Unmanned Aerial System Imagery. Forests, 2013, vol. 4, iss. 4, pp. 922–944. DOI: https://doi.org/10.3390/ f4040922

Maguire A.J., Eitel J.U.H., Vierling L.A., Johnson D.M., Griffin K.L., Boelman N.T., Jensen J.E., Greaves H.E., Meddens A.J.H. Terrestrial Lidar Scanning Reveals Fine-Scale Linkages between Microstructure and Photosynthetic Functioning of Small-Stature Spruce Trees at the Forest-Tundra Ecotone. Agricultural and Forest Meteorology, 2019, vol. 269-270, pp. 157–168. DOI: https://doi.org/10.1016/j.agrformet.2019.02.019

Ranson K.J., Montesano P.M., Nelson R. Object-Based Mapping of the Circumpolar Taiga-Tundra Ecotone with MODIS Tree Cover. Remote Sensing of Environment, 2011, vol. 115, iss. 12, pp. 3670–3680. DOI: https://doi.org/10.1016/j.rse.2011.09.006

Shettigara V.K., Sumerling G.M. Height determination of extended objects using shadows in SPOT images. Photogrammetric Engineering and Remote Sensing, 1998, vol. 64, iss. 1, pp. 35–44.

Solly E.F., Djukic I., Moiseev P.A., Andreyashkina N.I., Devi N.M., Göransson H., Mazepa V.S., Shiyatov S.G., Trubina M.R., Schweingruber F.H., Wilmking M., Hagedorn F. Treeline Advances and Associated Shifts in the Ground Vegetation Alter Fine Root Dynamics and Mycelia Production in the South and Polar Urals. Oecologia, 2017, vol. 183, iss. 2, pp. 571–586. DOI: https://doi.org/10.1007/s00442-016-3785-0

Westoby M.J., Brasington J., Glasser N.F., Hambrey M.J., Reynolds J.M. ‘Structure-from-Motion’ Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology, 2012, vol. 179, pp. 300–314. DOI: https://doi.org/10.1016/j.geomorph.2012.08.021

Загрузки

Опубликован

2021-07-16

Как цитировать

Низаметдинов, Н. Ф., П. А. Моисеев, и И. Б. Воробьев. «Лазерное сканирование и аэро- фотосъемка с БПЛА в исследовании структуры лесотундровых древостоев Хибин». Лесной журнал, вып. 4, июль 2021 г., сс. 9-22, doi:10.37482/0536-1036-2021-4-9-22.

Выпуск

Раздел

ЛЕСНОЕ ХОЗЯЙСТВО